// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include // Let f(t,A) = sin(t*A)/sin(A). The slerp of quaternions q0 and q1 is // slerp(t,q0,q1) = f(1-t,A)*q0 + f(t,A)*q1. // Let y = 1-cos(A); we allow A in [0,pi], so y in [0,1]. As a function of y, // a series representation for f(t,y) is // f(t,y) = sum_{i=0}^{infinity} c_{i}(t) y^{i} // where c_0(t) = t, c_{i}(t) = c_{i-1}(t)*(i^2 - t^2)/(i*(2*i+1)) for i >= 1. // The c_{i}(t) are polynomials in t of degree 2*i+1. The document // https://www.geometrictools/com/Documentation/FastAndAccurateSlerp.pdf // derives an approximation // g(t,y) = sum_{i=0}^{n-1} c_{i}(t) y^{i} + (1+u_n) c_{n}(t) y^n // which has degree 2*n+1 in t and degree n in y. // // Given q0 and q1 such that cos(A) = dot(q0,q1) in [0,1], in which case // A in [0,pi/2], let qh = (q0+q1)/|q0 + q1| = slerp(1/2,q0,q1). Note that // |q0 + q1| = 2*cos(A/2) because // sin(A/2)/sin(A) = sin(A/2)/(2*sin(A/2)*cos(A/2)) = 1/(2*cos(A/2)) // The angle between q0 and qh is the same as the angle between qh and q1, // namely, A/2 in [0,pi/4]. It may be shown that // +-- // slerp(t,q0,q1) = | slerp(2*t,q0,qh), 0 <= t <= 1/2 // | slerp(2*t-1,qh,q1), 1/2 <= t <= 1 // +-- // The slerp functions on the right-hand side involve angles in [0,pi/4], so // the approximation is more accurate for those evaluations than using the // original. // // TODO: The constants in GetEstimate are those of the published paper. // Modify these to match the aforementioned GT document. namespace WwiseGTE { template class ChebyshevRatio { public: // Compute f(t,A) = sin(t*A)/sin(A), where t in [0,1], A in [0,pi/2], // cosA = cos(A), f0 = f(1-t,A), and f1 = f(t,A). static void Get(Real t, Real cosA, Real& f0, Real& f1) { if (cosA < (Real)1) { // The angle A is in (0,pi/2]. Real A = std::acos(cosA); Real invSinA = (Real)1 / std::sin(A); f0 = std::sin(((Real)1 - t) * A) * invSinA; f1 = std::sin(t * A) * invSinA; } else { // The angle theta is 0. f0 = (Real)1 - t; f1 = (Real)t; } } // Compute estimates for f(t,y) = sin(t*A)/sin(A), where t in [0,1], // A in [0,pi/2], y = 1 - cos(A), f0 is the estimate for f(1-t,y), and // f1 is the estimate for f(t,y). The approximating function is a // polynomial of two variables. The template parameter N must be in // {1..16}. The degree in t is 2*N+1 and the degree in Y is N. template static void GetEstimate(Real t, Real y, Real & f0, Real & f1) { static_assert(1 <= N && N <= 16, "Invalid degree."); // The ASM output shows that the constants/ in these arrays are // loaded to XMM registers as literal values, and only those // constants required for the specified degree D are loaded. // That is, the compiler does a good job of optimizing the code. Real const onePlusMu[16] = { (Real)1.62943436108234530, (Real)1.73965850021313961, (Real)1.79701067629566813, (Real)1.83291820510335812, (Real)1.85772477879039977, (Real)1.87596835698904785, (Real)1.88998444919711206, (Real)1.90110745351730037, (Real)1.91015881189952352, (Real)1.91767344933047190, (Real)1.92401541194159076, (Real)1.92944142668012797, (Real)1.93413793373091059, (Real)1.93824371262559758, (Real)1.94186426368404708, (Real)1.94508125972497303 }; Real const a[16] = { (N != 1 ? (Real)1 : onePlusMu[0]) / ((Real)1 * (Real)3), (N != 2 ? (Real)1 : onePlusMu[1]) / ((Real)2 * (Real)5), (N != 3 ? (Real)1 : onePlusMu[2]) / ((Real)3 * (Real)7), (N != 4 ? (Real)1 : onePlusMu[3]) / ((Real)4 * (Real)9), (N != 5 ? (Real)1 : onePlusMu[4]) / ((Real)5 * (Real)11), (N != 6 ? (Real)1 : onePlusMu[5]) / ((Real)6 * (Real)13), (N != 7 ? (Real)1 : onePlusMu[6]) / ((Real)7 * (Real)15), (N != 8 ? (Real)1 : onePlusMu[7]) / ((Real)8 * (Real)17), (N != 9 ? (Real)1 : onePlusMu[8]) / ((Real)9 * (Real)19), (N != 10 ? (Real)1 : onePlusMu[9]) / ((Real)10 * (Real)21), (N != 11 ? (Real)1 : onePlusMu[10]) / ((Real)11 * (Real)23), (N != 12 ? (Real)1 : onePlusMu[11]) / ((Real)12 * (Real)25), (N != 13 ? (Real)1 : onePlusMu[12]) / ((Real)13 * (Real)27), (N != 14 ? (Real)1 : onePlusMu[13]) / ((Real)14 * (Real)29), (N != 15 ? (Real)1 : onePlusMu[14]) / ((Real)15 * (Real)31), (N != 16 ? (Real)1 : onePlusMu[15]) / ((Real)16 * (Real)33) }; Real const b[16] = { (N != 1 ? (Real)1 : onePlusMu[0]) * (Real)1 / (Real)3, (N != 2 ? (Real)1 : onePlusMu[1]) * (Real)2 / (Real)5, (N != 3 ? (Real)1 : onePlusMu[2]) * (Real)3 / (Real)7, (N != 4 ? (Real)1 : onePlusMu[3]) * (Real)4 / (Real)9, (N != 5 ? (Real)1 : onePlusMu[4]) * (Real)5 / (Real)11, (N != 6 ? (Real)1 : onePlusMu[5]) * (Real)6 / (Real)13, (N != 7 ? (Real)1 : onePlusMu[6]) * (Real)7 / (Real)15, (N != 8 ? (Real)1 : onePlusMu[7]) * (Real)8 / (Real)17, (N != 9 ? (Real)1 : onePlusMu[8]) * (Real)9 / (Real)19, (N != 10 ? (Real)1 : onePlusMu[9]) * (Real)10 / (Real)21, (N != 11 ? (Real)1 : onePlusMu[10]) * (Real)11 / (Real)23, (N != 12 ? (Real)1 : onePlusMu[11]) * (Real)12 / (Real)25, (N != 13 ? (Real)1 : onePlusMu[12]) * (Real)13 / (Real)27, (N != 14 ? (Real)1 : onePlusMu[13]) * (Real)14 / (Real)29, (N != 15 ? (Real)1 : onePlusMu[14]) * (Real)15 / (Real)31, (N != 16 ? (Real)1 : onePlusMu[15]) * (Real)16 / (Real)33 }; Real term0 = (Real)1 - t, term1 = t; Real sqr0 = term0 * term0, sqr1 = term1 * term1; f0 = term0; f1 = term1; for (int i = 0; i < N; ++i) { term0 *= (b[i] - a[i] * sqr0) * y; term1 *= (b[i] - a[i] * sqr1) * y; f0 += term0; f1 += term1; } } }; }