// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2020
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13

#pragma once

#include <Mathematics/IntrPlane3Plane3.h>
#include <Mathematics/Circle3.h>

namespace WwiseGTE
{
    template <typename Real>
    class TIQuery<Real, Plane3<Real>, Circle3<Real>>
    {
    public:
        struct Result
        {
            bool intersect;
        };

        Result operator()(Plane3<Real> const& plane, Circle3<Real> const& circle)
        {
            Result result;

            // Construct the plane of the circle.
            Plane3<Real> cPlane(circle.normal, circle.center);

            // Compute the intersection of this plane with the input plane.
            FIQuery<Real, Plane3<Real>, Plane3<Real>> ppQuery;
            auto ppResult = ppQuery(plane, cPlane);
            if (!ppResult.intersect)
            {
                // Planes are parallel and nonintersecting.
                result.intersect = false;
                return result;
            }

            if (!ppResult.isLine)
            {
                // Planes are the same, the circle is the common intersection
                // set.
                result.intersect = true;
                return result;
            }

            // The planes intersect in a line.  Locate one or two points that
            // are on the circle and line.  If the line is t*D+P, the circle
            // center is C, and the circle radius is r, then
            //   r^2 = |t*D+P-C|^2 = |D|^2*t^2 + 2*Dot(D,P-C)*t + |P-C|^2
            // This is a quadratic equation of the form
            // a2*t^2 + 2*a1*t + a0 = 0.
            Vector3<Real> diff = ppResult.line.origin - circle.center;
            Real a2 = Dot(ppResult.line.direction, ppResult.line.direction);
            Real a1 = Dot(diff, ppResult.line.direction);
            Real a0 = Dot(diff, diff) - circle.radius * circle.radius;

            // Real-valued roots imply an intersection.
            Real discr = a1 * a1 - a0 * a2;
            result.intersect = (discr >= (Real)0);
            return result;
        }
    };

    template <typename Real>
    class FIQuery<Real, Plane3<Real>, Circle3<Real>>
    {
    public:
        struct Result
        {
            bool intersect;

            // If 'intersect' is true, the intersection is either 1 or 2 points
            // or the entire circle.  When points, 'numIntersections' and
            // 'point' are valid.  When a circle, 'circle' is set to the incoming
            // circle.
            bool isPoints;
            int numIntersections;
            Vector3<Real> point[2];
            Circle3<Real> circle;
        };

        Result operator()(Plane3<Real> const& plane, Circle3<Real> const& circle)
        {
            Result result;

            // Construct the plane of the circle.
            Plane3<Real> cPlane(circle.normal, circle.center);

            // Compute the intersection of this plane with the input plane.
            FIQuery<Real, Plane3<Real>, Plane3<Real>> ppQuery;
            auto ppResult = ppQuery(plane, cPlane);
            if (!ppResult.intersect)
            {
                // Planes are parallel and nonintersecting.
                result.intersect = false;
                return result;
            }

            if (!ppResult.isLine)
            {
                // Planes are the same, the circle is the common intersection
                // set.
                result.intersect = true;
                result.isPoints = false;
                result.circle = circle;
                return result;
            }

            // The planes intersect in a line.  Locate one or two points that
            // are on the circle and line.  If the line is t*D+P, the circle
            // center is C, and the circle radius is r, then
            //   r^2 = |t*D+P-C|^2 = |D|^2*t^2 + 2*Dot(D,P-C)*t + |P-C|^2
            // This is a quadratic equation of the form
            // a2*t^2 + 2*a1*t + a0 = 0.
            Vector3<Real> diff = ppResult.line.origin - circle.center;
            Real a2 = Dot(ppResult.line.direction, ppResult.line.direction);
            Real a1 = Dot(diff, ppResult.line.direction);
            Real a0 = Dot(diff, diff) - circle.radius * circle.radius;

            Real discr = a1 * a1 - a0 * a2;
            if (discr < (Real)0)
            {
                // No real roots, the circle does not intersect the plane.
                result.intersect = false;
                return result;
            }

            result.isPoints = true;

            Real inv = ((Real)1) / a2;
            if (discr == (Real)0)
            {
                // One repeated root, the circle just touches the plane.
                result.numIntersections = 1;
                result.point[0] = ppResult.line.origin - (a1 * inv) * ppResult.line.direction;
                return result;
            }

            // Two distinct, real-valued roots, the circle intersects the
            // plane in two points.
            Real root = std::sqrt(discr);
            result.numIntersections = 2;
            result.point[0] = ppResult.line.origin - ((a1 + root) * inv) * ppResult.line.direction;
            result.point[1] = ppResult.line.origin - ((a1 - root) * inv) * ppResult.line.direction;
            return result;
        }
    };
}