// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include <Mathematics/ApprQuery.h> #include <Mathematics/SymmetricEigensolver3x3.h> #include <Mathematics/Vector3.h> // Least-squares fit of a plane to (x,y,z) data by using distance measurements // orthogonal to the proposed plane. The return value is 'true' if and only if // the fit is unique (always successful, 'true' when a minimum eigenvalue is // unique). The mParameters value is (P,N) = (origin,normal). The error for // S = (x0,y0,z0) is (S-P)^T*(I - N*N^T)*(S-P). namespace WwiseGTE { template <typename Real> class ApprOrthogonalPlane3 : public ApprQuery<Real, Vector3<Real>> { public: // Initialize the model parameters to zero. ApprOrthogonalPlane3() { mParameters.first = Vector3<Real>::Zero(); mParameters.second = Vector3<Real>::Zero(); } // Basic fitting algorithm. See ApprQuery.h for the various Fit(...) // functions that you can call. virtual bool FitIndexed( size_t numPoints, Vector3<Real> const* points, size_t numIndices, int const* indices) override { if (this->ValidIndices(numPoints, points, numIndices, indices)) { // Compute the mean of the points. Vector3<Real> mean = Vector3<Real>::Zero(); int const* currentIndex = indices; for (size_t i = 0; i < numIndices; ++i) { mean += points[*currentIndex++]; } Real invSize = (Real)1 / (Real)numIndices; mean *= invSize; if (std::isfinite(mean[0]) && std::isfinite(mean[1])) { // Compute the covariance matrix of the points. Real covar00 = (Real)0, covar01 = (Real)0, covar02 = (Real)0; Real covar11 = (Real)0, covar12 = (Real)0, covar22 = (Real)0; currentIndex = indices; for (size_t i = 0; i < numIndices; ++i) { Vector3<Real> diff = points[*currentIndex++] - mean; covar00 += diff[0] * diff[0]; covar01 += diff[0] * diff[1]; covar02 += diff[0] * diff[2]; covar11 += diff[1] * diff[1]; covar12 += diff[1] * diff[2]; covar22 += diff[2] * diff[2]; } covar00 *= invSize; covar01 *= invSize; covar02 *= invSize; covar11 *= invSize; covar12 *= invSize; covar22 *= invSize; // Solve the eigensystem. SymmetricEigensolver3x3<Real> es; std::array<Real, 3> eval; std::array<std::array<Real, 3>, 3> evec; es(covar00, covar01, covar02, covar11, covar12, covar22, false, +1, eval, evec); // The plane normal is the eigenvector in the direction of // smallest variance of the points. mParameters.first = mean; mParameters.second = evec[0]; // The fitted plane is unique when the minimum eigenvalue // has multiplicity 1. return eval[0] < eval[1]; } } mParameters.first = Vector3<Real>::Zero(); mParameters.second = Vector3<Real>::Zero(); return false; } // Get the parameters for the best fit. std::pair<Vector3<Real>, Vector3<Real>> const& GetParameters() const { return mParameters; } virtual size_t GetMinimumRequired() const override { return 3; } virtual Real Error(Vector3<Real> const& point) const override { Vector3<Real> diff = point - mParameters.first; Real sqrlen = Dot(diff, diff); Real dot = Dot(diff, mParameters.second); Real error = std::fabs(sqrlen - dot * dot); return error; } virtual void CopyParameters(ApprQuery<Real, Vector3<Real>> const* input) override { auto source = dynamic_cast<ApprOrthogonalPlane3<Real> const*>(input); if (source) { *this = *source; } } private: std::pair<Vector3<Real>, Vector3<Real>> mParameters; }; }