// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include #include namespace WwiseGTE { // The quadratic fit is // 0 = C[0] + C[1]*X + C[2]*Y + C[3]*X^2 + C[4]*Y^2 + C[5]*X*Y // subject to Length(C) = 1. Minimize E(C) = C^t M C with Length(C) = 1 // and M = (sum_i V_i)(sum_i V_i)^t where // V = (1, X, Y, X^2, Y^2, X*Y) // The minimum value is the smallest eigenvalue of M and C is a // corresponding unit length eigenvector. // // Input: // n = number of points to fit // p[0..n-1] = array of points to fit // // Output: // c[0..5] = coefficients of quadratic fit (the eigenvector) // return value of function is nonnegative and a measure of the fit // (the minimum eigenvalue; 0 = exact fit, positive otherwise) // // Canonical forms. The quadratic equation can be factored into // P^T A P + B^T P + K = 0 where P = (X,Y,Z), K = C[0], // B = (C[1],C[2],C[3]), and A is a 3x3 symmetric matrix with // A00 = C[4], A11 = C[5], A22 = C[6], A01 = C[7]/2, A02 = C[8]/2, // and A12 = C[9]/2. Matrix A = R^T D R where R is orthogonal and // D is diagonal (using an eigendecomposition). Define // V = R P = (v0,v1,v2), E = R B = (e0,e1,e2), D = diag(d0,d1,d2) // and f = K to obtain // d0 v0^2 + d1 v1^2 + d2 v^2 + e0 v0 + e1 v1 + e2 v2 + f = 0 // The characterization depends on the signs of the d_i. template class ApprQuadratic2 { public: Real operator()(int numPoints, Vector2 const* points, Real coefficients[6]) { Matrix<6, 6, Real> A; // constructor sets A to zero for (int i = 0; i < numPoints; ++i) { Real x = points[i][0]; Real y = points[i][1]; Real x2 = x * x; Real y2 = y * y; Real xy = x * y; Real x3 = x * x2; Real xy2 = x * y2; Real x2y = x * xy; Real y3 = y * y2; Real x4 = x * x3; Real x2y2 = x * xy2; Real x3y = x * x2y; Real y4 = y * y3; Real xy3 = x * y3; A(0, 1) += x; A(0, 2) += y; A(0, 3) += x2; A(0, 4) += y2; A(0, 5) += xy; A(1, 3) += x3; A(1, 4) += xy2; A(1, 5) += x2y; A(2, 4) += y3; A(3, 3) += x4; A(3, 4) += x2y2; A(3, 5) += x3y; A(4, 4) += y4; A(4, 5) += xy3; } A(0, 0) = static_cast(numPoints); A(1, 1) = A(0, 3); A(1, 2) = A(0, 5); A(2, 2) = A(0, 4); A(2, 3) = A(1, 5); A(2, 5) = A(1, 4); A(5, 5) = A(3, 4); for (int row = 0; row < 6; ++row) { for (int col = 0; col < row; ++col) { A(row, col) = A(col, row); } } Real invNumPoints = (Real)1 / static_cast(numPoints); for (int row = 0; row < 6; ++row) { for (int col = 0; col < 6; ++col) { A(row, col) *= invNumPoints; } } SymmetricEigensolver es(6, 1024); es.Solve(&A[0], +1); es.GetEigenvector(0, &coefficients[0]); // For an exact fit, numeric round-off errors might make the // minimum eigenvalue just slightly negative. Return the // absolute value because the application might rely on the // return value being nonnegative. return std::fabs(es.GetEigenvalue(0)); } }; // If you think your points are nearly circular, use this. The circle is // of the form C'[0]+C'[1]*X+C'[2]*Y+C'[3]*(X^2+Y^2), where // Length(C') = 1. The function returns // C = (C'[0]/C'[3],C'[1]/C'[3],C'[2]/C'[3]), so the fitted circle is // C[0]+C[1]*X+C[2]*Y+X^2+Y^2. The center is (xc,yc) = -0.5*(C[1],C[2]) // and the radius is r = sqrt(xc*xc+yc*yc-C[0]). template class ApprQuadraticCircle2 { public: Real operator()(int numPoints, Vector2 const* points, Circle2& circle) { Matrix<4, 4, Real> A; // constructor sets A to zero for (int i = 0; i < numPoints; ++i) { Real x = points[i][0]; Real y = points[i][1]; Real x2 = x * x; Real y2 = y * y; Real xy = x * y; Real r2 = x2 + y2; Real xr2 = x * r2; Real yr2 = y * r2; Real r4 = r2 * r2; A(0, 1) += x; A(0, 2) += y; A(0, 3) += r2; A(1, 1) += x2; A(1, 2) += xy; A(1, 3) += xr2; A(2, 2) += y2; A(2, 3) += yr2; A(3, 3) += r4; } A(0, 0) = static_cast(numPoints); for (int row = 0; row < 4; ++row) { for (int col = 0; col < row; ++col) { A(row, col) = A(col, row); } } Real invNumPoints = (Real)1 / static_cast(numPoints); for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { A(row, col) *= invNumPoints; } } SymmetricEigensolver es(4, 1024); es.Solve(&A[0], +1); Vector<4, Real> evector; es.GetEigenvector(0, &evector[0]); // TODO: Guard against zero divide? Real inv = (Real)1 / evector[3]; Real coefficients[3]; for (int row = 0; row < 3; ++row) { coefficients[row] = inv * evector[row]; } circle.center[0] = (Real)-0.5 * coefficients[1]; circle.center[1] = (Real)-0.5 * coefficients[2]; circle.radius = std::sqrt(std::fabs(Dot(circle.center, circle.center) - coefficients[0])); // For an exact fit, numeric round-off errors might make the // minimum eigenvalue just slightly negative. Return the // absolute value because the application might rely on the // return value being nonnegative. return std::fabs(es.GetEigenvalue(0)); } }; }