// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include // A torus with origin (0,0,0), outer radius r0 and inner radius r1 (with // (r0 >= r1) is defined implicitly as follows. The point P0 = (x,y,z) is on // the torus. Its projection onto the xy-plane is P1 = (x,y,0). The circular // cross section of the torus that contains the projection has radius r0 and // center P2 = r0*(x,y,0)/sqrt(x^2+y^2). The points triangle is a // right triangle with right angle at P1. The hypotenuse has length // r1, leg has length z and leg has length // |r0 - sqrt(x^2+y^2)|. The Pythagorean theorem says // z^2 + |r0 - sqrt(x^2+y^2)|^2 = r1^2. This can be algebraically // manipulated to // (x^2 + y^2 + z^2 + r0^2 - r1^2)^2 - 4 * r0^2 * (x^2 + y^2) = 0 // // A parametric form is // x = (r0 + r1 * cos(v)) * cos(u) // y = (r0 + r1 * cos(v)) * sin(u) // z = r1 * sin(v) // for u in [0,2*pi) and v in [0,2*pi). // // Generally, let the torus center be C with plane of symmetry containing C // and having directions D0 and D1. The axis of symmetry is the line // containing C and having direction N (the plane normal). The radius from // the center of the torus is r0 and the radius of the tube of the torus is // r1. A point P may be written as P = C + x*D0 + y*D1 + z*N, where matrix // [D0 D1 N] is orthonormal and has determinant 1. Thus, x = Dot(D0,P-C), // y = Dot(D1,P-C) and z = Dot(N,P-C). The implicit form is // [|P-C|^2 + r0^2 - r1^2]^2 - 4*r0^2*[|P-C|^2 - (Dot(N,P-C))^2] = 0 // Observe that D0 and D1 are not present in the equation, which is to be // expected by the symmetry. The parametric form is // P(u,v) = C + (r0 + r1*cos(v))*(cos(u)*D0 + sin(u)*D1) + r1*sin(v)*N // for u in [0,2*pi) and v in [0,2*pi). // // In the class Torus3, the members are 'center' C, 'direction0' D0, // 'direction1' D1, 'normal' N, 'radius0' r0 and 'radius1' r1. namespace WwiseGTE { template class Torus3 { public: // Construction and destruction. The default constructor sets center // to (0,0,0), direction0 to (1,0,0), direction1 to (0,1,0), normal // to (0,0,1), radius0 to 2 and radius1 to 1. Torus3() : center(Vector3::Zero()), direction0(Vector3::Unit(0)), direction1(Vector3::Unit(1)), normal(Vector3::Unit(2)), radius0((Real)2), radius1((Real)1) { } Torus3(Vector3 const& inCenter, Vector3 const& inDirection0, Vector3 const& inDirection1, Vector3 const& inNormal, Real inRadius0, Real inRadius1) : center(inCenter), direction0(inDirection0), direction1(inDirection1), normal(inNormal), radius0(inRadius0), radius1(inRadius1) { } // Evaluation of the surface. The function supports derivative // calculation through order 2; that is, maxOrder <= 2 is required. // If you want only the position, pass in maxOrder of 0. If you want // the position and first-order derivatives, pass in maxOrder of 1, // and so on. The output 'values' are ordered as: position X; // first-order derivatives dX/du, dX/dv; second-order derivatives // d2X/du2, d2X/dudv, d2X/dv2. The input array 'jet' must have enough // storage for the specified order. void Evaluate(Real u, Real v, unsigned int maxOrder, Vector3* jet) const { // Compute position. Real csu = std::cos(u); Real snu = std::sin(u); Real csv = std::cos(v); Real snv = std::sin(v); Real r1csv = radius1 * csv; Real r1snv = radius1 * snv; Real r0pr1csv = radius0 + r1csv; Vector3 combo0 = csu * direction0 + snu * direction1; Vector3 r0pr1csvcombo0 = r0pr1csv * combo0; Vector3 r1snvnormal = r1snv * normal; jet[0] = center + r0pr1csvcombo0 + r1snvnormal; if (maxOrder >= 1) { // Compute first-order derivatives. Vector3 combo1 = -snu * direction0 + csu * direction1; jet[1] = r0pr1csv * combo1; jet[2] = -r1snv * combo0 + r1csv * normal; if (maxOrder == 2) { // Compute second-order derivatives. jet[3] = -r0pr1csvcombo0; jet[4] = -r1snv * combo1; jet[5] = -r1csv * combo0 - r1snvnormal; } } } // Reverse lookup of parameters from position. void GetParameters(Vector3 const& X, Real& u, Real& v) const { Vector3 delta = X - center; // (r0 + r1*cos(v))*cos(u) Real dot0 = Dot(direction0, delta); // (r0 + r1*cos(v))*sin(u) Real dot1 = Dot(direction1, delta); // r1*sin(v) Real dot2 = Dot(normal, delta); // r1*cos(v) Real r1csv = std::sqrt(dot0 * dot0 + dot1 * dot1) - radius0; u = std::atan2(dot1, dot0); v = std::atan2(dot2, r1csv); } Vector3 center, direction0, direction1, normal; Real radius0, radius1; public: // Comparisons to support sorted containers. bool operator==(Torus3 const& torus) const { return center == torus.center && direction0 == torus.direction0 && direction1 == torus.direction1 && normal == torus.normal && radius0 == torus.radius0 && radius1 == torus.radius1; } bool operator!=(Torus3 const& torus) const { return !operator==(torus); } bool operator< (Torus3 const& torus) const { if (center < torus.center) { return true; } if (center > torus.center) { return false; } if (direction0 < torus.direction0) { return true; } if (direction0 > torus.direction0) { return false; } if (direction1 < torus.direction1) { return true; } if (direction1 > torus.direction1) { return false; } if (normal < torus.normal) { return true; } if (normal > torus.normal) { return false; } if (radius0 < torus.radius0) { return true; } if (radius0 > torus.radius0) { return false; } return radius1 < torus.radius1; } bool operator<=(Torus3 const& torus) const { return !torus.operator<(*this); } bool operator> (Torus3 const& torus) const { return torus.operator<(*this); } bool operator>=(Torus3 const& torus) const { return !operator<(torus); } }; }