// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include // Minimax polynomial approximations to tan(x). The polynomial p(x) of // degree D has only odd-power terms, is required to have linear term x, // and p(pi/4) = tan(pi/4) = 1. It minimizes the quantity // maximum{|tan(x) - p(x)| : x in [-pi/4,pi/4]} over all polynomials of // degree D subject to the constraints mentioned. namespace WwiseGTE { template class TanEstimate { public: // The input constraint is x in [-pi/4,pi/4]. For example, // float x; // in [-pi/4,pi/4] // float result = TanEstimate::Degree<3>(x); template inline static Real Degree(Real x) { return Evaluate(degree(), x); } // The input x can be any real number. Range reduction is used to // generate a value y in [-pi/2,pi/2]. If |y| <= pi/4, then the // polynomial is evaluated. If y in (pi/4,pi/2), set z = y - pi/4 // and use the identity // tan(y) = tan(z + pi/4) = [1 + tan(z)]/[1 - tan(z)] // Be careful when evaluating at y nearly pi/2, because tan(y) // becomes infinite. For example, // float x; // x any real number // float result = TanEstimate::DegreeRR<3>(x); template inline static Real DegreeRR(Real x) { Real y; Reduce(x, y); if (std::fabs(y) <= (Real)GTE_C_QUARTER_PI) { return Degree(y); } else if (y > (Real)GTE_C_QUARTER_PI) { Real poly = Degree(y - (Real)GTE_C_QUARTER_PI); return ((Real)1 + poly) / ((Real)1 - poly); } else { Real poly = Degree(y + (Real)GTE_C_QUARTER_PI); return -((Real)1 - poly) / ((Real)1 + poly); } } private: // Metaprogramming and private implementation to allow specialization // of a template member function. template struct degree {}; inline static Real Evaluate(degree<3>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_TAN_DEG3_C1; poly = (Real)GTE_C_TAN_DEG3_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<5>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_TAN_DEG5_C2; poly = (Real)GTE_C_TAN_DEG5_C1 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG5_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<7>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_TAN_DEG7_C3; poly = (Real)GTE_C_TAN_DEG7_C2 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG7_C1 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG7_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<9>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_TAN_DEG9_C4; poly = (Real)GTE_C_TAN_DEG9_C3 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG9_C2 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG9_C1 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG9_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<11>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_TAN_DEG11_C5; poly = (Real)GTE_C_TAN_DEG11_C4 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG11_C3 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG11_C2 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG11_C1 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG11_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<13>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_TAN_DEG13_C6; poly = (Real)GTE_C_TAN_DEG13_C5 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG13_C4 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG13_C3 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG13_C2 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG13_C1 + poly * xsqr; poly = (Real)GTE_C_TAN_DEG13_C0 + poly * xsqr; poly = poly * x; return poly; } // Support for range reduction. inline static void Reduce(Real x, Real& y) { // Map x to y in [-pi,pi], x = pi*quotient + remainder. y = std::fmod(x, (Real)GTE_C_PI); // Map y to [-pi/2,pi/2] with tan(y) = tan(x). if (y > (Real)GTE_C_HALF_PI) { y -= (Real)GTE_C_PI; } else if (y < (Real)-GTE_C_HALF_PI) { y += (Real)GTE_C_PI; } } }; }