// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include // Minimax polynomial approximations to sin(x). The polynomial p(x) of // degree D has only odd-power terms, is required to have linear term x, // and p(pi/2) = sin(pi/2) = 1. It minimizes the quantity // maximum{|sin(x) - p(x)| : x in [-pi/2,pi/2]} over all polynomials of // degree D subject to the constraints mentioned. namespace WwiseGTE { template class SinEstimate { public: // The input constraint is x in [-pi/2,pi/2]. For example, // float x; // in [-pi/2,pi/2] // float result = SinEstimate::Degree<3>(x); template inline static Real Degree(Real x) { return Evaluate(degree(), x); } // The input x can be any real number. Range reduction is used to // generate a value y in [-pi/2,pi/2] for which sin(y) = sin(x). // For example, // float x; // x any real number // float result = SinEstimate::DegreeRR<3>(x); template inline static Real DegreeRR(Real x) { return Degree(Reduce(x)); } private: // Metaprogramming and private implementation to allow specialization // of a template member function. template struct degree {}; inline static Real Evaluate(degree<3>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_SIN_DEG3_C1; poly = (Real)GTE_C_SIN_DEG3_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<5>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_SIN_DEG5_C2; poly = (Real)GTE_C_SIN_DEG5_C1 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG5_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<7>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_SIN_DEG7_C3; poly = (Real)GTE_C_SIN_DEG7_C2 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG7_C1 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG7_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<9>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_SIN_DEG9_C4; poly = (Real)GTE_C_SIN_DEG9_C3 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG9_C2 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG9_C1 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG9_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<11>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_SIN_DEG11_C5; poly = (Real)GTE_C_SIN_DEG11_C4 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG11_C3 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG11_C2 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG11_C1 + poly * xsqr; poly = (Real)GTE_C_SIN_DEG11_C0 + poly * xsqr; poly = poly * x; return poly; } // Support for range reduction. inline static Real Reduce(Real x) { // Map x to y in [-pi,pi], x = 2*pi*quotient + remainder. Real quotient = (Real)GTE_C_INV_TWO_PI * x; if (x >= (Real)0) { quotient = (Real)((int)(quotient + (Real)0.5)); } else { quotient = (Real)((int)(quotient - (Real)0.5)); } Real y = x - (Real)GTE_C_TWO_PI * quotient; // Map y to [-pi/2,pi/2] with sin(y) = sin(x). if (y > (Real)GTE_C_HALF_PI) { y = (Real)GTE_C_PI - y; } else if (y < (Real)-GTE_C_HALF_PI) { y = (Real)-GTE_C_PI - y; } return y; } }; }