// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include // A min-heap is a binary tree whose nodes have weights and with the // constraint that the weight of a parent node is less than or equal to the // weights of its children. This data structure may be used as a priority // queue. If the std::priority_queue interface suffices for your needs, use // that instead. However, for some geometric algorithms, that interface is // insufficient for optimal performance. For example, if you have a polyline // vertices that you want to decimate, each vertex's weight depends on its // neighbors' locations. If the minimum-weight vertex is removed from the // min-heap, the neighboring vertex weights must be updated--something that // is O(1) time when you store the vertices as a doubly linked list. The // neighbors are already in the min-heap, so modifying their weights without // removing then from--and then reinserting into--the min-heap requires they // must be moved to their proper places to restore the invariant of the // min-heap. With std::priority_queue, you have no direct access to the // modified vertices, forcing you to search for those vertices, remove them, // update their weights, and re-insert them. The min-heap implementation here // does support the update without removal and reinsertion. // // The ValueType represents the weight and it must support comparisons // "<" and "<=". Additional information can be stored in the min-heap for // convenient access; this is stored as the KeyType. In the (open) polyline // decimation example, the KeyType is a structure that stores indices to // a vertex and its neighbors. The following code illustrates the creation // and use of the min-heap. The Weight() function is whatever you choose to // guide which vertices are removed first from the polyline. // // struct Vertex { int previous, current, next; }; // int numVertices = ; // std::vector> positions(numVertices); // ; // MinHeap minHeap(numVertices); // std::vector::Record*> records(numVertices); // for (int i = 0; i < numVertices; ++i) // { // Vertex vertex; // vertex.previous = (i + numVertices - 1) % numVertices; // vertex.current = i; // vertex.next = (i + 1) % numVertices; // records[i] = minHeap.Insert(vertex, Weight(positions, vertex)); // } // // while (minHeap.GetNumElements() >= 2) // { // Vertex vertex; // Real weight; // minHeap.Remove(vertex, weight); // ; // // // Remove 'vertex' from the doubly linked list. // Vertex& vp = records[vertex.previous]->key; // Vertex& vc = records[vertex.current]->key; // Vertex& vn = records[vertex.next]->key; // vp.next = vc.next; // vn.previous = vc.previous; // // // Update the neighbors' weights in the min-heap. // minHeap.Update(records[vertex.previous], Weight(positions, vp)); // minHeap.Update(records[vertex.next], Weight(positions, vn)); // } namespace WwiseGTE { template class MinHeap { public: struct Record { KeyType key; ValueType value; int index; }; // Construction. The record 'value' members are uninitialized for // native types chosen for ValueType. If ValueType is of class type, // then the default constructor is used to set the 'value' members. MinHeap(int maxElements = 0) { Reset(maxElements); } MinHeap(MinHeap const& minHeap) { *this = minHeap; } // Assignment. MinHeap& operator=(MinHeap const& minHeap) { mNumElements = minHeap.mNumElements; mRecords = minHeap.mRecords; mPointers.resize(minHeap.mPointers.size()); for (auto& record : mRecords) { mPointers[record.index] = &record; } return *this; } // Clear the min-heap so that it has the specified max elements, // mNumElements is zero, and mPointers are set to the natural ordering // of mRecords. void Reset(int maxElements) { mNumElements = 0; if (maxElements > 0) { mRecords.resize(maxElements); mPointers.resize(maxElements); for (int i = 0; i < maxElements; ++i) { mPointers[i] = &mRecords[i]; mPointers[i]->index = i; } } else { mRecords.clear(); mPointers.clear(); } } // Get the remaining number of elements in the min-heap. This number // is in the range {0..maxElements}. inline int GetNumElements() const { return mNumElements; } // Get the root of the min-heap. The return value is 'true' whenever // the min-heap is not empty. This function reads the root but does // not remove the element from the min-heap. bool GetMinimum(KeyType& key, ValueType& value) const { if (mNumElements > 0) { key = mPointers[0]->key; value = mPointers[0]->value; return true; } else { return false; } } // Insert into the min-heap the 'value' that corresponds to the 'key'. // The return value is a pointer to the heap record that stores a copy // of 'value', and the pointer value is constant for the life of the // min-heap. If you must update a member of the min-heap, say, as // illustrated in the polyline decimation example, pass the pointer to // Update: // auto* valueRecord = minHeap.Insert(key, value); // ; // minHeap.Update(valueRecord, newValue). Record* Insert(KeyType const& key, ValueType const& value) { // Return immediately when the heap is full. if (mNumElements == static_cast(mRecords.size())) { return nullptr; } // Store the input information in the last heap record, which is // the last leaf in the tree. int child = mNumElements++; Record* record = mPointers[child]; record->key = key; record->value = value; // Propagate the information toward the root of the tree until it // reaches its correct position, thus restoring the tree to a // valid heap. while (child > 0) { int parent = (child - 1) / 2; if (mPointers[parent]->value <= value) { // The parent has a value smaller than or equal to the // child's value, so we now have a valid heap. break; } // The parent has a larger value than the child's value. Swap // the parent and child: // Move the parent into the child's slot. mPointers[child] = mPointers[parent]; mPointers[child]->index = child; // Move the child into the parent's slot. mPointers[parent] = record; mPointers[parent]->index = parent; child = parent; } return mPointers[child]; } // Remove the root of the heap and return its 'key' and 'value // members. The root contains the minimum value of all heap elements. // The return value is 'true' whenever the min-heap was not empty // before the Remove call. bool Remove(KeyType& key, ValueType& value) { // Return immediately when the heap is empty. if (mNumElements == 0) { return false; } // Get the information from the root of the heap. Record* root = mPointers[0]; key = root->key; value = root->value; // Restore the tree to a heap. Abstractly, record is the new root // of the heap. It is moved down the tree via parent-child swaps // until it is in a location that restores the tree to a heap. int last = --mNumElements; Record* record = mPointers[last]; int parent = 0, child = 1; while (child <= last) { if (child < last) { // Select the child with smallest value to be the one that // is swapped with the parent, if necessary. int childP1 = child + 1; if (mPointers[childP1]->value < mPointers[child]->value) { child = childP1; } } if (record->value <= mPointers[child]->value) { // The tree is now a heap. break; } // Move the child into the parent's slot. mPointers[parent] = mPointers[child]; mPointers[parent]->index = parent; parent = child; child = 2 * child + 1; } // The previous 'last' record was moved to the root and propagated // down the tree to its final resting place, restoring the tree to // a heap. The slot mPointers[parent] is that resting place. mPointers[parent] = record; mPointers[parent]->index = parent; // The old root record must not be lost. Attach it to the slot // that contained the old last record. mPointers[last] = root; mPointers[last]->index = last; return true; } // The value of a heap record must be modified through this function // call. The side effect is that the heap is updated accordingly to // restore the data structure to a min-heap. The input 'record' // should be a pointer returned by Insert(value); see the comments for // the Insert() function. void Update(Record* record, ValueType const& value) { // Return immediately on invalid record. if (!record) { return; } int parent, child, childP1, maxChild; if (record->value < value) { record->value = value; // The new value is larger than the old value. Propagate it // toward the leaves. parent = record->index; child = 2 * parent + 1; while (child < mNumElements) { // At least one child exists. Locate the one of maximum // value. childP1 = child + 1; if (childP1 < mNumElements) { // Two children exist. if (mPointers[child]->value <= mPointers[childP1]->value) { maxChild = child; } else { maxChild = childP1; } } else { // One child exists. maxChild = child; } if (value <= mPointers[maxChild]->value) { // The new value is in the correct place to restore // the tree to a heap. break; } // The child has a larger value than the parent's value. // Swap the parent and child: // Move the child into the parent's slot. mPointers[parent] = mPointers[maxChild]; mPointers[parent]->index = parent; // Move the parent into the child's slot. mPointers[maxChild] = record; mPointers[maxChild]->index = maxChild; parent = maxChild; child = 2 * parent + 1; } } else if (value < record->value) { record->value = value; // The new weight is smaller than the old weight. Propagate // it toward the root. child = record->index; while (child > 0) { // A parent exists. parent = (child - 1) / 2; if (mPointers[parent]->value <= value) { // The new value is in the correct place to restore // the tree to a heap. break; } // The parent has a smaller value than the child's value. // Swap the child and parent. // Move the parent into the child's slot. mPointers[child] = mPointers[parent]; mPointers[child]->index = child; // Move the child into the parent's slot. mPointers[parent] = record; mPointers[parent]->index = parent; child = parent; } } } // Support for debugging. The functions test whether the data // structure is a valid min-heap. bool IsValid() const { for (int child = 0; child < mNumElements; ++child) { int parent = (child - 1) / 2; if (parent > 0) { if (mPointers[child]->value < mPointers[parent]->value) { return false; } if (mPointers[parent]->index != parent) { return false; } } } return true; } private: // A 2-level storage system is used. The pointers have two roles. // Firstly, they are unique to each inserted value in order to support // the Update() capability of the min-heap. Secondly, they avoid // potentially expensive copying of Record objects as sorting occurs // in the heap. int mNumElements; std::vector mRecords; std::vector mPointers; }; }