// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include #include #include namespace WwiseGTE { template class TIQuery, Triangle3> { public: struct Result { bool intersect; }; Result operator()(Line3 const& line, Triangle3 const& triangle) { Result result; // Compute the offset origin, edges, and normal. Vector3 diff = line.origin - triangle.v[0]; Vector3 edge1 = triangle.v[1] - triangle.v[0]; Vector3 edge2 = triangle.v[2] - triangle.v[0]; Vector3 normal = Cross(edge1, edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = diff, D = line direction, // E1 = edge1, E2 = edge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) Real DdN = Dot(line.direction, normal); Real sign; if (DdN > (Real)0) { sign = (Real)1; } else if (DdN < (Real)0) { sign = (Real)-1; DdN = -DdN; } else { // Line and triangle are parallel, call it a "no intersection" // even if the line and triangle are coplanar and // intersecting. result.intersect = false; return result; } Real DdQxE2 = sign * DotCross(line.direction, diff, edge2); if (DdQxE2 >= (Real)0) { Real DdE1xQ = sign * DotCross(line.direction, edge1, diff); if (DdE1xQ >= (Real)0) { if (DdQxE2 + DdE1xQ <= DdN) { // Line intersects triangle. result.intersect = true; return result; } // else: b1+b2 > 1, no intersection } // else: b2 < 0, no intersection } // else: b1 < 0, no intersection result.intersect = false; return result; } }; template class FIQuery, Triangle3> { public: struct Result { Result() : intersect(false), parameter((Real)0), triangleBary{ (Real)0, (Real)0, (Real)0 }, point{ (Real)0, (Real)0, (Real)0 } { } bool intersect; Real parameter; std::array triangleBary; Vector3 point; }; Result operator()(Line3 const& line, Triangle3 const& triangle) { Result result; // Compute the offset origin, edges, and normal. Vector3 diff = line.origin - triangle.v[0]; Vector3 edge1 = triangle.v[1] - triangle.v[0]; Vector3 edge2 = triangle.v[2] - triangle.v[0]; Vector3 normal = Cross(edge1, edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = diff, D = line direction, // E1 = edge1, E2 = edge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) Real DdN = Dot(line.direction, normal); Real sign; if (DdN > (Real)0) { sign = (Real)1; } else if (DdN < (Real)0) { sign = (Real)-1; DdN = -DdN; } else { // Line and triangle are parallel, call it a "no intersection" // even if the line and triangle are coplanar and // intersecting. result.intersect = false; return result; } Real DdQxE2 = sign * DotCross(line.direction, diff, edge2); if (DdQxE2 >= (Real)0) { Real DdE1xQ = sign * DotCross(line.direction, edge1, diff); if (DdE1xQ >= (Real)0) { if (DdQxE2 + DdE1xQ <= DdN) { // Line intersects triangle. Real QdN = -sign * Dot(diff, normal); Real inv = (Real)1 / DdN; result.intersect = true; result.parameter = QdN * inv; result.triangleBary[1] = DdQxE2 * inv; result.triangleBary[2] = DdE1xQ * inv; result.triangleBary[0] = (Real)1 - result.triangleBary[1] - result.triangleBary[2]; result.point = line.origin + result.parameter * line.direction; return result; } // else: b1+b2 > 1, no intersection } // else: b2 < 0, no intersection } // else: b1 < 0, no intersection result.intersect = false; return result; } }; }