// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include // The queries consider the cylinder to be a solid. namespace WwiseGTE { template class FIQuery, Cylinder3> { public: struct Result { bool intersect; int numIntersections; std::array parameter; std::array, 2> point; }; Result operator()(Line3 const& line, Cylinder3 const& cylinder) { Result result; DoQuery(line.origin, line.direction, cylinder, result); for (int i = 0; i < result.numIntersections; ++i) { result.point[i] = line.origin + result.parameter[i] * line.direction; } return result; } protected: void DoQuery(Vector3 const& lineOrigin, Vector3 const& lineDirection, Cylinder3 const& cylinder, Result& result) { // Initialize the result as if there is no intersection. If we // discover an intersection, these values will be modified // accordingly. result.intersect = false; result.numIntersections = 0; // Create a coordinate system for the cylinder. In this system, // the cylinder segment center C is the origin and the cylinder // axis direction W is the z-axis. U and V are the other // coordinate axis directions. If P = x*U+y*V+z*W, the cylinder // is x^2 + y^2 = r^2, where r is the cylinder radius. The end // caps are |z| = h/2, where h is the cylinder height. Vector3 basis[3]; // {W, U, V} basis[0] = cylinder.axis.direction; ComputeOrthogonalComplement(1, basis); Real halfHeight = (Real)0.5 * cylinder.height; Real rSqr = cylinder.radius * cylinder.radius; // Convert incoming line origin to capsule coordinates. Vector3 diff = lineOrigin - cylinder.axis.origin; Vector3 P{ Dot(basis[1], diff), Dot(basis[2], diff), Dot(basis[0], diff) }; // Get the z-value, in cylinder coordinates, of the incoming // line's unit-length direction. Real dz = Dot(basis[0], lineDirection); if (std::fabs(dz) == (Real)1) { // The line is parallel to the cylinder axis. Determine // whether the line intersects the cylinder end disks. Real radialSqrDist = rSqr - P[0] * P[0] - P[1] * P[1]; if (radialSqrDist >= (Real)0) { // The line intersects the cylinder end disks. result.intersect = true; result.numIntersections = 2; if (dz > (Real)0) { result.parameter[0] = -P[2] - halfHeight; result.parameter[1] = -P[2] + halfHeight; } else { result.parameter[0] = P[2] - halfHeight; result.parameter[1] = P[2] + halfHeight; } } // else: The line is outside the cylinder, no intersection. return; } // Convert the incoming line unit-length direction to cylinder // coordinates. Vector3 D{ Dot(basis[1], lineDirection), Dot(basis[2], lineDirection), dz }; Real a0, a1, a2, discr, root, inv, tValue; if (D[2] == (Real)0) { // The line is perpendicular to the cylinder axis. if (std::fabs(P[2]) <= halfHeight) { // Test intersection of line P+t*D with infinite cylinder // x^2+y^2 = r^2. This reduces to computing the roots of // a quadratic equation. If P = (px,py,pz) and // D = (dx,dy,dz), then the quadratic equation is // (dx^2+dy^2)*t^2 + 2*(px*dx+py*dy)*t // + (px^2+py^2-r^2) = 0 a0 = P[0] * P[0] + P[1] * P[1] - rSqr; a1 = P[0] * D[0] + P[1] * D[1]; a2 = D[0] * D[0] + D[1] * D[1]; discr = a1 * a1 - a0 * a2; if (discr > (Real)0) { // The line intersects the cylinder in two places. result.intersect = true; result.numIntersections = 2; root = std::sqrt(discr); inv = ((Real)1) / a2; result.parameter[0] = (-a1 - root) * inv; result.parameter[1] = (-a1 + root) * inv; } else if (discr == (Real)0) { // The line is tangent to the cylinder. result.intersect = true; result.numIntersections = 1; result.parameter[0] = -a1 / a2; // Used by derived classes. result.parameter[1] = result.parameter[0]; } // else: The line does not intersect the cylinder. } // else: The line is outside the planes of the cylinder end // disks. return; } // Test for intersections with the planes of the end disks. inv = (Real)1 / D[2]; Real t0 = (-halfHeight - P[2]) * inv; Real xTmp = P[0] + t0 * D[0]; Real yTmp = P[1] + t0 * D[1]; if (xTmp * xTmp + yTmp * yTmp <= rSqr) { // Plane intersection inside the top cylinder end disk. result.parameter[result.numIntersections++] = t0; } Real t1 = (+halfHeight - P[2]) * inv; xTmp = P[0] + t1 * D[0]; yTmp = P[1] + t1 * D[1]; if (xTmp * xTmp + yTmp * yTmp <= rSqr) { // Plane intersection inside the bottom cylinder end disk. result.parameter[result.numIntersections++] = t1; } if (result.numIntersections < 2) { // Test for intersection with the cylinder wall. a0 = P[0] * P[0] + P[1] * P[1] - rSqr; a1 = P[0] * D[0] + P[1] * D[1]; a2 = D[0] * D[0] + D[1] * D[1]; discr = a1 * a1 - a0 * a2; if (discr > (Real)0) { root = std::sqrt(discr); inv = (Real)1 / a2; tValue = (-a1 - root) * inv; if (t0 <= t1) { if (t0 <= tValue && tValue <= t1) { result.parameter[result.numIntersections++] = tValue; } } else { if (t1 <= tValue && tValue <= t0) { result.parameter[result.numIntersections++] = tValue; } } if (result.numIntersections < 2) { tValue = (-a1 + root) * inv; if (t0 <= t1) { if (t0 <= tValue && tValue <= t1) { result.parameter[result.numIntersections++] = tValue; } } else { if (t1 <= tValue && tValue <= t0) { result.parameter[result.numIntersections++] = tValue; } } } // else: Line intersects end disk and cylinder wall. } else if (discr == (Real)0) { tValue = -a1 / a2; if (t0 <= t1) { if (t0 <= tValue && tValue <= t1) { result.parameter[result.numIntersections++] = tValue; } } else { if (t1 <= tValue && tValue <= t0) { result.parameter[result.numIntersections++] = tValue; } } } // else: Line does not intersect cylinder wall. } // else: Line intersects both top and bottom cylinder end disks. if (result.numIntersections == 2) { result.intersect = true; if (result.parameter[0] > result.parameter[1]) { std::swap(result.parameter[0], result.parameter[1]); } } else if (result.numIntersections == 1) { result.intersect = true; // Used by derived classes. result.parameter[1] = result.parameter[0]; } } }; }