// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include // Minimax polynomial approximations to cos(x). The polynomial p(x) of // degree D has only even-power terms, is required to have constant term 1, // and p(pi/2) = cos(pi/2) = 0. It minimizes the quantity // maximum{|cos(x) - p(x)| : x in [-pi/2,pi/2]} over all polynomials of // degree D subject to the constraints mentioned. namespace WwiseGTE { template class CosEstimate { public: // The input constraint is x in [-pi/2,pi/2]. For example, // float x; // in [-pi/2,pi/2] // float result = CosEstimate::Degree<4>(x); template inline static Real Degree(Real x) { return Evaluate(degree(), x); } // The input x can be any real number. Range reduction is used to // generate a value y in [-pi/2,pi/2] and a sign s for which // cos(y) = s*cos(x). For example, // float x; // x any real number // float result = CosEstimate::DegreeRR<3>(x); template inline static Real DegreeRR(Real x) { Real y, sign; Reduce(x, y, sign); Real poly = sign * Degree(y); return poly; } private: // Metaprogramming and private implementation to allow specialization // of a template member function. template struct degree {}; inline static Real Evaluate(degree<2>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_COS_DEG2_C1; poly = (Real)GTE_C_COS_DEG2_C0 + poly * xsqr; return poly; } inline static Real Evaluate(degree<4>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_COS_DEG4_C2; poly = (Real)GTE_C_COS_DEG4_C1 + poly * xsqr; poly = (Real)GTE_C_COS_DEG4_C0 + poly * xsqr; return poly; } inline static Real Evaluate(degree<6>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_COS_DEG6_C3; poly = (Real)GTE_C_COS_DEG6_C2 + poly * xsqr; poly = (Real)GTE_C_COS_DEG6_C1 + poly * xsqr; poly = (Real)GTE_C_COS_DEG6_C0 + poly * xsqr; return poly; } inline static Real Evaluate(degree<8>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_COS_DEG8_C4; poly = (Real)GTE_C_COS_DEG8_C3 + poly * xsqr; poly = (Real)GTE_C_COS_DEG8_C2 + poly * xsqr; poly = (Real)GTE_C_COS_DEG8_C1 + poly * xsqr; poly = (Real)GTE_C_COS_DEG8_C0 + poly * xsqr; return poly; } inline static Real Evaluate(degree<10>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_COS_DEG10_C5; poly = (Real)GTE_C_COS_DEG10_C4 + poly * xsqr; poly = (Real)GTE_C_COS_DEG10_C3 + poly * xsqr; poly = (Real)GTE_C_COS_DEG10_C2 + poly * xsqr; poly = (Real)GTE_C_COS_DEG10_C1 + poly * xsqr; poly = (Real)GTE_C_COS_DEG10_C0 + poly * xsqr; return poly; } // Support for range reduction. inline static void Reduce(Real x, Real& y, Real& sign) { // Map x to y in [-pi,pi], x = 2*pi*quotient + remainder. Real quotient = (Real)GTE_C_INV_TWO_PI * x; if (x >= (Real)0) { quotient = (Real)((int)(quotient + (Real)0.5)); } else { quotient = (Real)((int)(quotient - (Real)0.5)); } y = x - (Real)GTE_C_TWO_PI * quotient; // Map y to [-pi/2,pi/2] with cos(y) = sign*cos(x). if (y > (Real)GTE_C_HALF_PI) { y = (Real)GTE_C_PI - y; sign = (Real)-1; } else if (y < (Real)-GTE_C_HALF_PI) { y = (Real)-GTE_C_PI - y; sign = (Real)-1; } else { sign = (Real)1; } } }; }