// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include namespace WwiseGTE { // Compute an oriented bounding box of the points. The box center is the // average of the points. The box axes are the eigenvectors of the // covariance matrix. template bool GetContainer(int numPoints, Vector3 const* points, OrientedBox3& box) { // Fit the points with a Gaussian distribution. ApprGaussian3 fitter; if (fitter.Fit(numPoints, points)) { box = fitter.GetParameters(); // Let C be the box center and let U0, U1, and U2 be the box axes. // Each input point is of the form X = C + y0*U0 + y1*U1 + y2*U2. // The following code computes min(y0), max(y0), min(y1), max(y1), // min(y2), and max(y2). The box center is then adjusted to be // C' = C + 0.5*(min(y0)+max(y0))*U0 + 0.5*(min(y1)+max(y1))*U1 // + 0.5*(min(y2)+max(y2))*U2 Vector3 diff = points[0] - box.center; Vector3 pmin{ Dot(diff, box.axis[0]), Dot(diff, box.axis[1]), Dot(diff, box.axis[2]) }; Vector3 pmax = pmin; for (int i = 1; i < numPoints; ++i) { diff = points[i] - box.center; for (int j = 0; j < 3; ++j) { Real dot = Dot(diff, box.axis[j]); if (dot < pmin[j]) { pmin[j] = dot; } else if (dot > pmax[j]) { pmax[j] = dot; } } } for (int j = 0; j < 3; ++j) { box.center += ((Real)0.5 * (pmin[j] + pmax[j])) * box.axis[j]; box.extent[j] = (Real)0.5 * (pmax[j] - pmin[j]); } return true; } return false; } template bool GetContainer(std::vector> const& points, OrientedBox3& box) { return GetContainer(static_cast(points.size()), points.data(), box); } // Test for containment. Let X = C + y0*U0 + y1*U1 + y2*U2 where C is the // box center and U0, U1, U2 are the orthonormal axes of the box. X is in // the box if |y_i| <= E_i for all i where E_i are the extents of the box. template bool InContainer(Vector3 const& point, OrientedBox3 const& box) { Vector3 diff = point - box.center; for (int i = 0; i < 3; ++i) { Real coeff = Dot(diff, box.axis[i]); if (std::fabs(coeff) > box.extent[i]) { return false; } } return true; } // Construct an oriented box that contains two other oriented boxes. The // result is not guaranteed to be the minimum volume box containing the // input boxes. template bool MergeContainers(OrientedBox3 const& box0, OrientedBox3 const& box1, OrientedBox3& merge) { // The first guess at the box center. This value will be updated // later after the input box vertices are projected onto axes // determined by an average of box axes. merge.center = (Real)0.5 * (box0.center + box1.center); // A box's axes, when viewed as the columns of a matrix, form a // rotation matrix. The input box axes are converted to quaternions. // The average quaternion is computed, then normalized to unit length. // The result is the slerp of the two input quaternions with t-value // of 1/2. The result is converted back to a rotation matrix and its // columns are selected as the merged box axes. // // TODO: When the GTL Lie Algebra code is posted, use the geodesic // path between the affine matrices formed by the box centers and // orientations. Choose t = 1/2 along that geodesic. Matrix3x3 rot0, rot1; rot0.SetCol(0, box0.axis[0]); rot0.SetCol(1, box0.axis[1]); rot0.SetCol(2, box0.axis[2]); rot1.SetCol(0, box1.axis[0]); rot1.SetCol(1, box1.axis[1]); rot1.SetCol(2, box1.axis[2]); Quaternion q0 = Rotation<3, Real>(rot0); Quaternion q1 = Rotation<3, Real>(rot1); if (Dot(q0, q1) < (Real)0) { q1 = -q1; } Quaternion q = q0 + q1; Normalize(q); Matrix3x3 rot = Rotation<3, Real>(q); for (int j = 0; j < 3; ++j) { merge.axis[j] = rot.GetCol(j); } // Project the input box vertices onto the merged-box axes. Each axis // D[i] containing the current center C has a minimum projected value // min[i] and a maximum projected value max[i]. The corresponding end // points on the axes are C+min[i]*D[i] and C+max[i]*D[i]. The point // C is not necessarily the midpoint for any of the intervals. The // actual box center will be adjusted from C to a point C' that is the // midpoint of each interval, // C' = C + sum_{i=0}^2 0.5*(min[i]+max[i])*D[i] // The box extents are // e[i] = 0.5*(max[i]-min[i]) std::array, 8> vertex; Vector3 pmin{ (Real)0, (Real)0, (Real)0 }; Vector3 pmax{ (Real)0, (Real)0, (Real)0 }; box0.GetVertices(vertex); for (int i = 0; i < 8; ++i) { Vector3 diff = vertex[i] - merge.center; for (int j = 0; j < 3; ++j) { Real dot = Dot(diff, merge.axis[j]); if (dot > pmax[j]) { pmax[j] = dot; } else if (dot < pmin[j]) { pmin[j] = dot; } } } box1.GetVertices(vertex); for (int i = 0; i < 8; ++i) { Vector3 diff = vertex[i] - merge.center; for (int j = 0; j < 3; ++j) { Real dot = Dot(diff, merge.axis[j]); if (dot > pmax[j]) { pmax[j] = dot; } else if (dot < pmin[j]) { pmin[j] = dot; } } } // [min,max] is the axis-aligned box in the coordinate system of the // merged box axes. Update the current box center to be the center of // the new box. Compute the extents based on the new center. Real const half = (Real)0.5; for (int j = 0; j < 3; ++j) { merge.center += half * (pmax[j] + pmin[j]) * merge.axis[j]; merge.extent[j] = half * (pmax[j] - pmin[j]); } return true; } }