// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include namespace WwiseGTE { // Compute an oriented bounding box of the points. The box center is the // average of the points. The box axes are the eigenvectors of the // covariance matrix. template bool GetContainer(int numPoints, Vector2 const* points, OrientedBox2& box) { // Fit the points with a Gaussian distribution. ApprGaussian2 fitter; if (fitter.Fit(numPoints, points)) { box = fitter.GetParameters(); // Let C be the box center and let U0 and U1 be the box axes. // Each input point is of the form X = C + y0*U0 + y1*U1. The // following code computes min(y0), max(y0), min(y1), and max(y1). // The box center is then adjusted to be // C' = C + 0.5*(min(y0)+max(y0))*U0 + 0.5*(min(y1)+max(y1))*U1 Vector2 diff = points[0] - box.center; Vector2 pmin{ Dot(diff, box.axis[0]), Dot(diff, box.axis[1]) }; Vector2 pmax = pmin; for (int i = 1; i < numPoints; ++i) { diff = points[i] - box.center; for (int j = 0; j < 2; ++j) { Real dot = Dot(diff, box.axis[j]); if (dot < pmin[j]) { pmin[j] = dot; } else if (dot > pmax[j]) { pmax[j] = dot; } } } for (int j = 0; j < 2; ++j) { box.center += ((Real)0.5 * (pmin[j] + pmax[j])) * box.axis[j]; box.extent[j] = (Real)0.5 * (pmax[j] - pmin[j]); } return true; } return false; } template bool GetContainer(std::vector> const& points, OrientedBox2& box) { return GetContainer(static_cast(points.size()), points.data(), box); } // Test for containment. Let X = C + y0*U0 + y1*U1 where C is the box // center and U0 and U1 are the orthonormal axes of the box. X is in the // box when |y_i| <= E_i for all i, where E_i are the extents of the box. template bool InContainer(Vector2 const& point, OrientedBox2 const& box) { Vector2 diff = point - box.center; for (int i = 0; i < 2; ++i) { Real coeff = Dot(diff, box.axis[i]); if (std::fabs(coeff) > box.extent[i]) { return false; } } return true; } // Construct an oriented box that contains two other oriented boxes. The // result is not guaranteed to be the minimum area box containing the // input boxes. template bool MergeContainers(OrientedBox2 const& box0, OrientedBox2 const& box1, OrientedBox2& merge) { // The first guess at the box center. This value will be updated // later after the input box vertices are projected onto axes // determined by an average of box axes. merge.center = (Real)0.5 * (box0.center + box1.center); // The merged box axes are the averages of the input box axes. The // axes of the second box are negated, if necessary, so they form // acute angles with the axes of the first box. if (Dot(box0.axis[0], box1.axis[0]) >= (Real)0) { merge.axis[0] = (Real)0.5 * (box0.axis[0] + box1.axis[0]); } else { merge.axis[0] = (Real)0.5 * (box0.axis[0] - box1.axis[0]); } Normalize(merge.axis[0]); merge.axis[1] = -Perp(merge.axis[0]); // Project the input box vertices onto the merged-box axes. Each // axis D[i] containing the current center C has a minimum projected // value min[i] and a maximum projected value max[i]. The // corresponding endpoints on the axes are C+min[i]*D[i] and // C+max[i]*D[i]. The point C is not necessarily the midpoint for // any of the intervals. The actual box center will be adjusted from // C to a point C' that is the midpoint of each interval, // C' = C + sum_{i=0}^1 0.5*(min[i]+max[i])*D[i] // The box extents are // e[i] = 0.5*(max[i]-min[i]) std::array, 4> vertex; Vector2 pmin{ (Real)0, (Real)0 }; Vector2 pmax{ (Real)0, (Real)0 }; box0.GetVertices(vertex); for (int i = 0; i < 4; ++i) { Vector2 diff = vertex[i] - merge.center; for (int j = 0; j < 2; ++j) { Real dot = Dot(diff, merge.axis[j]); if (dot > pmax[j]) { pmax[j] = dot; } else if (dot < pmin[j]) { pmin[j] = dot; } } } box1.GetVertices(vertex); for (int i = 0; i < 4; ++i) { Vector2 diff = vertex[i] - merge.center; for (int j = 0; j < 2; ++j) { Real dot = Dot(diff, merge.axis[j]); if (dot > pmax[j]) { pmax[j] = dot; } else if (dot < pmin[j]) { pmin[j] = dot; } } } // [min,max] is the axis-aligned box in the coordinate system of the // merged box axes. Update the current box center to be the center of // the new box. Compute the extents based on the new center. Real const half = (Real)0.5; for (int j = 0; j < 2; ++j) { merge.center += half * (pmax[j] + pmin[j]) * merge.axis[j]; merge.extent[j] = half * (pmax[j] - pmin[j]); } return true; } }