// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include #include #include namespace WwiseGTE { // The input points are fit with a Gaussian distribution. The center C of // the ellipsoid is chosen to be the mean of the distribution. The axes // of the ellipsoid are chosen to be the eigenvectors of the covariance // matrix M. The shape of the ellipsoid is determined by the absolute // values of the eigenvalues. NOTE: The construction is ill-conditioned // if the points are (nearly) collinear or (nearly) planar. In this case // M has a (nearly) zero eigenvalue, so inverting M is problematic. template bool GetContainer(int numPoints, Vector3 const* points, Ellipsoid3& ellipsoid) { // Fit the points with a Gaussian distribution. The covariance // matrix is M = sum_j D[j]*U[j]*U[j]^T, where D[j] are the // eigenvalues and U[j] are corresponding unit-length eigenvectors. ApprGaussian3 fitter; if (fitter.Fit(numPoints, points)) { OrientedBox3 box = fitter.GetParameters(); // If either eigenvalue is nonpositive, adjust the D[] values so // that we actually build an ellipsoid. for (int j = 0; j < 3; ++j) { if (box.extent[j] < (Real)0) { box.extent[j] = -box.extent[j]; } } // Grow the ellipsoid, while retaining its shape determined by the // covariance matrix, to enclose all the input points. The // quadratic/ form that is used for the ellipsoid construction is // Q(X) = (X-C)^T*M*(X-C) // = (X-C)^T*(sum_j D[j]*U[j]*U[j]^T)*(X-C) // = sum_j D[j]*Dot(U[j],X-C)^2 // If the maximum value of Q(X[i]) for all input points is V^2, // then a bounding ellipsoid is Q(X) = V^2 since Q(X[i]) <= V^2 // for all i. Real maxValue = (Real)0; for (int i = 0; i < numPoints; ++i) { Vector3 diff = points[i] - box.center; Real dot[3] = { Dot(box.axis[0], diff), Dot(box.axis[1], diff), Dot(box.axis[2], diff) }; Real value = box.extent[0] * dot[0] * dot[0] + box.extent[1] * dot[1] * dot[1] + box.extent[2] * dot[2] * dot[2]; if (value > maxValue) { maxValue = value; } } // Arrange for the quadratic to satisfy Q(X) <= 1. ellipsoid.center = box.center; for (int j = 0; j < 3; ++j) { ellipsoid.axis[j] = box.axis[j]; ellipsoid.extent[j] = std::sqrt(maxValue / box.extent[j]); } return true; } return false; } // Test for containment of a point inside an ellipsoid. template bool InContainer(Vector3 const& point, Ellipsoid3 const& ellipsoid) { Vector3 diff = point - ellipsoid.center; Vector3 standardized{ Dot(diff, ellipsoid.axis[0]) / ellipsoid.extent[0], Dot(diff, ellipsoid.axis[1]) / ellipsoid.extent[1], Dot(diff, ellipsoid.axis[2]) / ellipsoid.extent[2] }; return Length(standardized) <= (Real)1; } // Construct a bounding ellipsoid for the two input ellipsoids. The result is // not necessarily the minimum-volume ellipsoid containing the two ellipsoids. template bool MergeContainers(Ellipsoid3 const& ellipsoid0, Ellipsoid3 const& ellipsoid1, Ellipsoid3& merge) { // Compute the average of the input centers merge.center = (Real)0.5 * (ellipsoid0.center + ellipsoid1.center); // The bounding ellipsoid orientation is the average of the input // orientations. Matrix3x3 rot0, rot1; rot0.SetCol(0, ellipsoid0.axis[0]); rot0.SetCol(1, ellipsoid0.axis[1]); rot0.SetCol(2, ellipsoid0.axis[2]); rot1.SetCol(0, ellipsoid1.axis[0]); rot1.SetCol(1, ellipsoid1.axis[1]); rot1.SetCol(2, ellipsoid1.axis[2]); Quaternion q0 = Rotation<3, Real>(rot0); Quaternion q1 = Rotation<3, Real>(rot1); if (Dot(q0, q1) < (Real)0) { q1 = -q1; } Quaternion q = q0 + q1; Normalize(q); Matrix3x3 rot = Rotation<3, Real>(q); for (int j = 0; j < 3; ++j) { merge.axis[j] = rot.GetCol(j); } // Project the input ellipsoids onto the axes obtained by the average // of the orientations and that go through the center obtained by the // average of the centers. for (int i = 0; i < 3; ++i) { // Projection axis. Line3 line(merge.center, merge.axis[i]); // Project ellipsoids onto the axis. Real min0, max0, min1, max1; Project(ellipsoid0, line, min0, max0); Project(ellipsoid1, line, min1, max1); // Determine the smallest interval containing the projected // intervals. Real maxIntr = (max0 >= max1 ? max0 : max1); Real minIntr = (min0 <= min1 ? min0 : min1); // Update the average center to be the center of the bounding box // defined by the projected intervals. merge.center += line.direction * ((Real)0.5 * (minIntr + maxIntr)); // Compute the extents of the box based on the new center. merge.extent[i] = (Real)0.5 * (maxIntr - minIntr); } return true; } }