// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include namespace WwiseGTE { // The input points are fit with a Gaussian distribution. The center C of // the ellipse is chosen to be the mean of the distribution. The axes of // the ellipse are chosen to be the eigenvectors of the covariance matrix // M. The shape of the ellipse is determined by the absolute values of // the eigenvalues. NOTE: The construction is ill-conditioned if the // points are (nearly) collinear. In this case M has a (nearly) zero // eigenvalue, so inverting M can be a problem numerically. template bool GetContainer(int numPoints, Vector2 const* points, Ellipse2& ellipse) { // Fit the points with a Gaussian distribution. The covariance matrix // is M = sum_j D[j]*U[j]*U[j]^T, where D[j] are the eigenvalues and // U[j] are corresponding unit-length eigenvectors. ApprGaussian2 fitter; if (fitter.Fit(numPoints, points)) { OrientedBox2 box = fitter.GetParameters(); // If either eigenvalue is nonpositive, adjust the D[] values so // that we actually build an ellipse. for (int j = 0; j < 2; ++j) { if (box.extent[j] < (Real)0) { box.extent[j] = -box.extent[j]; } } // Grow the ellipse, while retaining its shape determined by the // covariance matrix, to enclose all the input points. The // quadratic form that is used for the ellipse construction is // Q(X) = (X-C)^T*M*(X-C) // = (X-C)^T*(sum_j D[j]*U[j]*U[j]^T)*(X-C) // = sum_j D[j]*Dot(U[j],X-C)^2 // If the maximum value of Q(X[i]) for all input points is V^2, // then a bounding ellipse is Q(X) = V^2, because Q(X[i]) <= V^2 // for all i. Real maxValue = (Real)0; for (int i = 0; i < numPoints; ++i) { Vector2 diff = points[i] - box.center; Real dot[2] = { Dot(box.axis[0], diff), Dot(box.axis[1], diff) }; Real value = box.extent[0] * dot[0] * dot[0] + box.extent[1] * dot[1] * dot[1]; if (value > maxValue) { maxValue = value; } } // Arrange for the quadratic to satisfy Q(X) <= 1. ellipse.center = box.center; for (int j = 0; j < 2; ++j) { ellipse.axis[j] = box.axis[j]; ellipse.extent[j] = std::sqrt(maxValue / box.extent[j]); } return true; } return false; } // Test for containment of a point inside an ellipse. template bool InContainer(Vector2 const& point, Ellipse2 const& ellipse) { Vector2 diff = point - ellipse.center; Vector2 standardized{ Dot(diff, ellipse.axis[0]) / ellipse.extent[0], Dot(diff, ellipse.axis[1]) / ellipse.extent[1] }; return Length(standardized) <= (Real)1; } // Construct a bounding ellipse for the two input ellipses. The result is // not necessarily the minimum-area ellipse containing the two ellipses. template bool MergeContainers(Ellipse2 const& ellipse0, Ellipse2 const& ellipse1, Ellipse2& merge) { // Compute the average of the input centers. merge.center = (Real)0.5 * (ellipse0.center + ellipse1.center); // The bounding ellipse orientation is the average of the input // orientations. if (Dot(ellipse0.axis[0], ellipse1.axis[0]) >= (Real)0) { merge.axis[0] = (Real)0.5 * (ellipse0.axis[0] + ellipse1.axis[0]); } else { merge.axis[0] = (Real)0.5 * (ellipse0.axis[0] - ellipse1.axis[0]); } Normalize(merge.axis[0]); merge.axis[1] = -Perp(merge.axis[0]); // Project the input ellipses onto the axes obtained by the average // of the orientations and that go through the center obtained by the // average of the centers. for (int j = 0; j < 2; ++j) { // Projection axis. Line2 line(merge.center, merge.axis[j]); // Project ellipsoids onto the axis. Real min0, max0, min1, max1; Project(ellipse0, line, min0, max0); Project(ellipse1, line, min1, max1); // Determine the smallest interval containing the projected // intervals. Real maxIntr = (max0 >= max1 ? max0 : max1); Real minIntr = (min0 <= min1 ? min0 : min1); // Update the average center to be the center of the bounding box // defined by the projected intervals. merge.center += line.direction * ((Real)0.5 * (minIntr + maxIntr)); // Compute the extents of the box based on the new center. merge.extent[j] = (Real)0.5 * (maxIntr - minIntr); } return true; } }