// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include // Minimax polynomial approximations to atan(x). The polynomial p(x) of // degree D has only odd-power terms, is required to have linear term x, // and p(1) = atan(1) = pi/4. It minimizes the quantity // maximum{|atan(x) - p(x)| : x in [-1,1]} over all polynomials of // degree D subject to the constraints mentioned. namespace WwiseGTE { template class ATanEstimate { public: // The input constraint is x in [-1,1]. For example, // float x; // in [-1,1] // float result = ATanEstimate::Degree<3>(x); template inline static Real Degree(Real x) { return Evaluate(degree(), x); } // The input x can be any real number. Range reduction is used via // the identities atan(x) = pi/2 - atan(1/x) for x > 0, and // atan(x) = -pi/2 - atan(1/x) for x < 0. For example, // float x; // x any real number // float result = ATanEstimate::DegreeRR<3>(x); template inline static Real DegreeRR(Real x) { if (std::fabs(x) <= (Real)1) { return Degree(x); } else if (x > (Real)1) { return (Real)GTE_C_HALF_PI - Degree((Real)1 / x); } else { return (Real)-GTE_C_HALF_PI - Degree((Real)1 / x); } } private: // Metaprogramming and private implementation to allow specialization // of a template member function. template struct degree {}; inline static Real Evaluate(degree<3>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_ATAN_DEG3_C1; poly = (Real)GTE_C_ATAN_DEG3_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<5>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_ATAN_DEG5_C2; poly = (Real)GTE_C_ATAN_DEG5_C1 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG5_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<7>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_ATAN_DEG7_C3; poly = (Real)GTE_C_ATAN_DEG7_C2 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG7_C1 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG7_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<9>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_ATAN_DEG9_C4; poly = (Real)GTE_C_ATAN_DEG9_C3 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG9_C2 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG9_C1 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG9_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<11>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_ATAN_DEG11_C5; poly = (Real)GTE_C_ATAN_DEG11_C4 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG11_C3 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG11_C2 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG11_C1 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG11_C0 + poly * xsqr; poly = poly * x; return poly; } inline static Real Evaluate(degree<13>, Real x) { Real xsqr = x * x; Real poly; poly = (Real)GTE_C_ATAN_DEG13_C6; poly = (Real)GTE_C_ATAN_DEG13_C5 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG13_C4 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG13_C3 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG13_C2 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG13_C1 + poly * xsqr; poly = (Real)GTE_C_ATAN_DEG13_C0 + poly * xsqr; poly = poly * x; return poly; } }; }