// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include <Mathematics/IntrIntervals.h> #include <Mathematics/IntrLine3Ellipsoid3.h> #include <Mathematics/Ray.h> #include <Mathematics/Matrix3x3.h> // The queries consider the ellipsoid to be a solid. namespace WwiseGTE { template <typename Real> class TIQuery<Real, Ray3<Real>, Ellipsoid3<Real>> { public: struct Result { bool intersect; }; Result operator()(Ray3<Real> const& ray, Ellipsoid3<Real> const& ellipsoid) { // The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the line is // X = P+t*D. Substitute the line equation into the ellipsoid // equation to obtain a quadratic equation // Q(t) = a2*t^2 + 2*a1*t + a0 = 0 // where a2 = D^T*M*D, a1 = D^T*M*(P-K) and // a0 = (P-K)^T*M*(P-K)-1. Result result; Matrix3x3<Real> M; ellipsoid.GetM(M); Vector3<Real> diff = ray.origin - ellipsoid.center; Vector3<Real> matDir = M * ray.direction; Vector3<Real> matDiff = M * diff; Real a2 = Dot(ray.direction, matDir); Real a1 = Dot(ray.direction, matDiff); Real a0 = Dot(diff, matDiff) - (Real)1; Real discr = a1 * a1 - a0 * a2; if (discr >= (Real)0) { // Test whether ray origin is inside ellipsoid. if (a0 <= (Real)0) { result.intersect = true; } else { // At this point, Q(0) = a0 > 0 and Q(t) has real roots. // It is also the case that a2 > 0, since M is positive // definite, implying that D^T*M*D > 0 for any nonzero // vector D. Thus, an intersection occurs only when // Q'(0) < 0. result.intersect = (a1 < (Real)0); } } else { // No intersection if Q(t) has no real roots. result.intersect = false; } return result; } }; template <typename Real> class FIQuery<Real, Ray3<Real>, Ellipsoid3<Real>> : public FIQuery<Real, Line3<Real>, Ellipsoid3<Real>> { public: struct Result : public FIQuery<Real, Line3<Real>, Ellipsoid3<Real>>::Result { // No additional information to compute. }; Result operator()(Ray3<Real> const& ray, Ellipsoid3<Real> const& ellipsoid) { Result result; DoQuery(ray.origin, ray.direction, ellipsoid, result); for (int i = 0; i < result.numIntersections; ++i) { result.point[i] = ray.origin + result.parameter[i] * ray.direction; } return result; } protected: void DoQuery(Vector3<Real> const& rayOrigin, Vector3<Real> const& rayDirection, Ellipsoid3<Real> const& ellipsoid, Result& result) { FIQuery<Real, Line3<Real>, Ellipsoid3<Real>>::DoQuery(rayOrigin, rayDirection, ellipsoid, result); if (result.intersect) { // The line containing the ray intersects the ellipsoid; the // t-interval is [t0,t1]. The ray intersects the capsule as // long as [t0,t1] overlaps the ray t-interval [0,+infinity). std::array<Real, 2> rayInterval = { (Real)0, std::numeric_limits<Real>::max() }; FIQuery<Real, std::array<Real, 2>, std::array<Real, 2>> iiQuery; auto iiResult = iiQuery(result.parameter, rayInterval); if (iiResult.intersect) { result.numIntersections = iiResult.numIntersections; result.parameter = iiResult.overlap; } else { result.intersect = false; result.numIntersections = 0; } } } }; }