// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include #include #include namespace WwiseGTE { template class TIQuery, Line2> { public: struct Result { bool intersect; // The number is 0 (no intersection), 1 (lines intersect in a // single point) or std::numeric_limits::max() (lines are // the same). int numIntersections; }; Result operator()(Line2 const& line0, Line2 const& line1) { Result result; // The intersection of two lines is a solution to P0 + s0*D0 = // P1 + s1*D1. Rewrite this as s0*D0 - s1*D1 = P1 - P0 = Q. If // DotPerp(D0, D1)) = 0, the lines are parallel. Additionally, if // DotPerp(Q, D1)) = 0, the lines are the same. If // Dotperp(D0, D1)) is not zero, then // s0 = DotPerp(Q, D1))/DotPerp(D0, D1)) // produces the point of intersection. Also, // s1 = DotPerp(Q, D0))/DotPerp(D0, D1)) Vector2 diff = line1.origin - line0.origin; Real D0DotPerpD1 = DotPerp(line0.direction, line1.direction); if (D0DotPerpD1 != (Real)0) { // The lines are not parallel. result.intersect = true; result.numIntersections = 1; } else { // The lines are parallel. Normalize(diff); Real diffNDotPerpD1 = DotPerp(diff, line1.direction); if (diffNDotPerpD1 != (Real)0) { // The lines are parallel but distinct. result.intersect = false; result.numIntersections = 0; } else { // The lines are the same. result.intersect = true; result.numIntersections = std::numeric_limits::max(); } } return result; } }; template class FIQuery, Line2> { public: struct Result { bool intersect; // The number is 0 (no intersection), 1 (lines intersect in a // single point) or std::numeric_limits::max() (lines are // the same). int numIntersections; // If numIntersections is 1, the intersection is // point = line0.origin + line0parameter[0] * line0.direction // = line1.origin + line1parameter[0] * line1.direction // If numIntersections is maxInt, point is not valid but the // intervals are // line0Parameter[] = { -maxReal, +maxReal } // line1Parameter[] = { -maxReal, +maxReal } Real line0Parameter[2], line1Parameter[2]; Vector2 point; }; Result operator()(Line2 const& line0, Line2 const& line1) { Result result; // The intersection of two lines is a solution to P0 + s0*D0 = // P1 + s1*D1. Rewrite this as s0*D0 - s1*D1 = P1 - P0 = Q. If // DotPerp(D0, D1)) = 0, the lines are parallel. Additionally, if // DotPerp(Q, D1)) = 0, the lines are the same. If // Dotperp(D0, D1)) is not zero, then // s0 = DotPerp(Q, D1))/DotPerp(D0, D1)) // produces the point of intersection. Also, // s1 = DotPerp(Q, D0))/DotPerp(D0, D1)) Vector2 diff = line1.origin - line0.origin; Real D0DotPerpD1 = DotPerp(line0.direction, line1.direction); if (D0DotPerpD1 != (Real)0) { // The lines are not parallel. result.intersect = true; result.numIntersections = 1; Real invD0DotPerpD1 = (Real)1 / D0DotPerpD1; Real diffDotPerpD0 = DotPerp(diff, line0.direction); Real diffDotPerpD1 = DotPerp(diff, line1.direction); Real s0 = diffDotPerpD1 * invD0DotPerpD1; Real s1 = diffDotPerpD0 * invD0DotPerpD1; result.line0Parameter[0] = s0; result.line1Parameter[0] = s1; result.point = line0.origin + s0 * line0.direction; } else { // The lines are parallel. Normalize(diff); Real diffNDotPerpD1 = DotPerp(diff, line1.direction); if (std::fabs(diffNDotPerpD1) != (Real)0) { // The lines are parallel but distinct. result.intersect = false; result.numIntersections = 0; } else { // The lines are the same. result.intersect = true; result.numIntersections = std::numeric_limits::max(); Real maxReal = std::numeric_limits::max(); result.line0Parameter[0] = -maxReal; result.line0Parameter[1] = +maxReal; result.line1Parameter[0] = -maxReal; result.line1Parameter[1] = +maxReal; } } return result; } }; }